I am a professor at School of Cyber Science and Technology, Shandong University. Previously, I was a postdoc at CISPA Helmholtz Center for Information Security, supervised by Dr. Yang Zhang. In Oct 2023, I obtained my Ph.D. from CISPA Helmholtz Center for Information Security, supervised by Dr. Yang Zhang. I received my bachelor (2017) and master (2020) degrees from Shandong University, supervised by Prof. Shanqing Guo.
Research keywords include: Machine learning, Security, Privacy, Safety and so on.
My research focuses on Trustworthy Machine Learning, with an emphasis on identifying and mitigating vulnerabilities in AI systems. I investigate privacy attacks (e.g., membership and attribute inference), security threats (e.g., backdoors and data poisoning), and develop technical defenses against unethical AI deployments.
") does not match the recommended repository name for your site ("").
", so that your site can be accessed directly at "http://".
However, if the current repository name is intended, you can ignore this message by removing "{% include widgets/debug_repo_name.html %}" in index.html.
",
which does not match the baseurl ("") configured in _config.yml.
baseurl in _config.yml to "".

Zheng Li, Ning Yu, Ahmed Salem, Michael Backes, Mario Fritz, Yang Zhang†
USENIX Security 2023
Deepfakes pose severe threats of visual misinformation to our society. One representative deepfake application is face manipulation that modifies a victim's facial attributes in an image, e.g., changing her age or hair color. The state-of-the-art face manipulation techniques rely on Generative Adversarial Networks (GANs). In this paper, we propose the first defense system, namely UnGANable, against GAN-inversion-based face manipulation. In specific, UnGANable focuses on defending GAN inversion, an essential step for face manipulation. Its core technique is to search for alternative images (called cloaked images) around the original images (called target images) in image space. When posted online, these cloaked images can jeopardize the GAN inversion process. We consider two state-of-the-art inversion techniques including optimization-based inversion and hybrid inversion, and design five different defenses under five scenarios depending on the defender's background knowledge. Extensive experiments on four popular GAN models trained on two benchmark face datasets show that UnGANable achieves remarkable effectiveness and utility performance, and outperforms multiple baseline methods. We further investigate four adaptive adversaries to bypass UnGANable and show that some of them are slightly effective.
Zheng Li, Ning Yu, Ahmed Salem, Michael Backes, Mario Fritz, Yang Zhang†
USENIX Security 2023
Deepfakes pose severe threats of visual misinformation to our society. One representative deepfake application is face manipulation that modifies a victim's facial attributes in an image, e.g., changing her age or hair color. The state-of-the-art face manipulation techniques rely on Generative Adversarial Networks (GANs). In this paper, we propose the first defense system, namely UnGANable, against GAN-inversion-based face manipulation. In specific, UnGANable focuses on defending GAN inversion, an essential step for face manipulation. Its core technique is to search for alternative images (called cloaked images) around the original images (called target images) in image space. When posted online, these cloaked images can jeopardize the GAN inversion process. We consider two state-of-the-art inversion techniques including optimization-based inversion and hybrid inversion, and design five different defenses under five scenarios depending on the defender's background knowledge. Extensive experiments on four popular GAN models trained on two benchmark face datasets show that UnGANable achieves remarkable effectiveness and utility performance, and outperforms multiple baseline methods. We further investigate four adaptive adversaries to bypass UnGANable and show that some of them are slightly effective.

Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes, Yang Zhang†
CCS 2022
Relying on the truth that not all inputs require the same level of computational cost to produce reliable predictions, multi-exit networks are gaining attention as a prominent approach for pushing the limits of efficient deployment. Multi-exit networks endow a backbone model with early exits, allowing predictions at intermediate layers of the model and thus saving computation time and energy. However, various current designs of multi-exit networks are only considered to achieve the best trade-off between resource usage efficiency and prediction accuracy, the privacy risks stemming from them have never been explored. This prompts the need for a comprehensive investigation of privacy risks in multi-exit networks. ...
Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes, Yang Zhang†
CCS 2022
Relying on the truth that not all inputs require the same level of computational cost to produce reliable predictions, multi-exit networks are gaining attention as a prominent approach for pushing the limits of efficient deployment. Multi-exit networks endow a backbone model with early exits, allowing predictions at intermediate layers of the model and thus saving computation time and energy. However, various current designs of multi-exit networks are only considered to achieve the best trade-off between resource usage efficiency and prediction accuracy, the privacy risks stemming from them have never been explored. This prompts the need for a comprehensive investigation of privacy risks in multi-exit networks. ...

Zheng Li, Yang Zhang†
CCS 2021
Machine learning (ML) has been widely adopted in various privacy-critical applications, e.g., face recognition and medical image analysis. However, recent research has shown that ML models are vulnerable to attacks against their training data. Membership inference is one major attack in this domain: Given a data sample and model, an adversary aims to determine whether the sample is part of the model's training set. Existing membership inference attacks leverage the confidence scores returned by the model as their inputs (score-based attacks). However, these attacks can be easily mitigated if the model only exposes the predicted label, i.e., the final model decision. ...
Zheng Li, Yang Zhang†
CCS 2021
Machine learning (ML) has been widely adopted in various privacy-critical applications, e.g., face recognition and medical image analysis. However, recent research has shown that ML models are vulnerable to attacks against their training data. Membership inference is one major attack in this domain: Given a data sample and model, an adversary aims to determine whether the sample is part of the model's training set. Existing membership inference attacks leverage the confidence scores returned by the model as their inputs (score-based attacks). However, these attacks can be easily mitigated if the model only exposes the predicted label, i.e., the final model decision. ...